CENTRAL WISCONSIN MATHEMATICS LEAGUE

Meet II
January 30, 2001

Category I (Geometry)

Miscellaneous Problems (point values as indicated). On your answer sheet, circle the correct response or write your answer in the blank(s) provided. (P) means that partial credit may be given. Figures are not necessarily drawn to scale. Unless otherwise noted, all questions refer to Euclidean plane geometry.

1. [2 points each](P) True/False: On your answer sheet, circle" T " for each of the following statements which is always true; circle " F " for each statement which is not always true.
(a) All equilateral triangles are congruent.
(b) A line segment has only one bisecting line.
(c) The measure of an interior angle of a regular polygon with $2 n$ sides is twice the measure of an interior angle of a regular polygon with n sides.
(d) A trapezoid is a quadrilateral with at least two parallel sides.
(e) If a base angle of an isosceles triangle has measure less than 60°, then the base is the shortest side of the triangle.
2. $[20$ points $](\mathrm{P}) \quad$ Quadrilateral $A B C D$ is a parallelogram, $\overline{A C} \| \overline{D H}$, $\overline{B E}$ bisects $\angle A B C, \overline{B F}$ is an altitude of $\triangle A B C$, and $\overline{H I}$ is a median of $\triangle G H D$. If $m(\angle C A B)=27^{\circ}$ and $m(\angle B C A)=79^{\circ}$, find the exact measures of $\angle A B E, \angle C D A, \angle E B F, \angle I G H$, and $\angle G H I$.

3. [10 points $](\mathrm{P})$ Triangles $B C D$ and $A E C$ are equilateral. Using the points A, B, C, D, and E, find an angle different from $\angle E C B$ which must be congruent to $\angle E C B$ and find a segment different from $\overline{A D}$ which must be congruent to $\overline{A D}$.

4. [10 points] (P) Rectangle $P H J M$ is inscribed in $\triangle G K O, G H=1.28$ inches, $K J=1.28$ inches, and $m(\angle K O G)=110^{\circ}$. Find the exact measures of $\angle O P M$ and $\angle K M J$.

5. [10 points] Points X, Y, and Z are three consecutive vertices of a regular n-gon with $n \geqslant 7$ such that Y is between X and Z. Point W lies in the exterior of the n-gon such that $m(\angle W X Y)=60^{\circ}=m(\angle W Z Y)$. Find the exact measure of $\angle X W Z$ when $n=36$.

6. [10 points] An isosceles trapezoid $A B C D$ has congruent legs $\overline{A B}$ and $\overline{D C}$. If the diagonals of the trapezoid meet at $E, A E=x+7, E C=3 x-1$, and $D B=26$, find the exact value of $D E$.

7. [10 points] If $\overleftrightarrow{A B}$ and $\overleftrightarrow{E G}$ are parallel, angle $B K L$ has measure $9 x-13$, and $m(\angle B K H)=21 x+6$, find the exact measure of $\angle E L J$.

8. [10 points] A rectangle is divided into four rectangles with areas $\sqrt{18}, \sqrt{3}$, $\sqrt{2}$, and x as shown in the figure. Find the exact value of x.

$\sqrt{18}$	$\sqrt{3}$
x	$\sqrt{2}$

9. [10 points] Consider the grids of small equilateral triangles for $n=1,2,3,4$ shown in the figure. Note that the total number of distinct equilateral triangles of all sizes and orientations equals five when $n=2$. Find the total number of distinct equilateral triangles of all sizes and orientations in the grid for $n=4$.

$n=1$

$n=2$

$n=3$

$n=4$

Student's Answer Sheet

Name:
PRINT: First Last

School: \qquad Code \qquad
I participated in Meet I: Yes \square No \square

Miscellaneous Problems (point values as indicated). Circle the correct response or write your answer in the blank(s) provided; the boxes at the right are for grading use only. (P) means that partial credit may be given.

1. (a) $\mathbf{T} \mathbf{F}$
(b) $\mathbf{T} \mathbf{F}$
(c) $\mathbf{T} \quad \mathbf{F}$
(d) $\mathbf{T} \quad \mathbf{F}$
(e) $\mathbf{T} \mathbf{F}$
2. $m(\angle A B E)=$ \qquad - $m(\angle C D A)=$ \qquad \circ $m(\angle E B F)=$ \qquad \circ

20 P	

$m(\angle I G H)=$ \qquad \circ $m(\angle G H I)=$ \qquad -
3. angle \qquad $\cong \angle E C B$ \qquad

4. measure of $\angle O P M=$ \qquad \circ
measure of $\angle K M J=$ \qquad \circ

10 P	

5. measure of $\angle X W Z=$ \qquad

10	

10

\square

