CENTRAL WISCONSIN MATHEMATICS LEAGUE ANSWER KEYS

Meet II

January 29, 2020

Category I (Geometry, No Calculators)

1. c 2. a 3. d 4. a 5. c 6. c 7. c 8. e

- 9. Refer to the figure to the right. Observe that $\triangle ABC$ and $\triangle DEF$ are congruent 30°-60°-90° triangles with BC = EF = 1 unit. Then $AC = DF = \sqrt{3}$ units and hence the equilateral triangle has side length $s = 2(1 + \sqrt{3})$ units since CF = 2. It follows that the triangle has area $\sqrt{3} s^2/4 = \sqrt{3}(1 + \sqrt{3})^2 = \sqrt{3}(4 + 2\sqrt{3}) = 6 + 4\sqrt{3}$ square units.
- $A \xrightarrow{B} \xrightarrow{E} \\ C \xrightarrow{F} D$

- 10. Two solutions are given.
 - [A] Refer to the figure to the right. Note that $\triangle ABC$ is a right triangle since \overline{AB} is a diameter of the circle. Being the length of an altitude of $\triangle ABC$ that divides the hypotenuse \overline{AB} into segments with lengths x and 1, y is the mean proportional (i.e., the geometric mean) of x and 1 since y/x = 1/y by similar triangles. Therefore, $y = \sqrt{x \cdot 1} = \sqrt{x}$.
 - **[B]** Refer to the figure to the right. Let z = AC and w = BC. By the Pythagorean theorem, we have $x^2 + y^2 = z^2$, $1^2 + y^2 = w^2$, and $w^2 + z^2 = (x+1)^2$. Solve for y in $(1+y^2) + (x^2+y^2) = (x+1)^2$ to get $y = \sqrt{x}$.
- 11. Let L denote the initial length of the string in meters, so that $L = 2\pi R$, where R is the radius of the smooth, spherical Earth in meters. If r denotes the radius (in meters) of the circle formed by the shortened string, then $L 1 = 2\pi r$. Then $L (L 1) = 2\pi (R r)$ and therefore $R r = 1/(2\pi)$ meters.
- 12. Refer to the figure to the right. Let R and r be the radii (in mm) of the outer and inner circles, respectively. Then $r^2 + (30/2)^2 = R^2$ and so $\pi R^2 \pi r^2 = \pi (R^2 r^2) = \pi (15^2) = 225\pi$ mm².

13. The clock's minute hand rotates clockwise $360^{\circ}/60 = 6^{\circ}$ each minute, and its hour hand rotates $360^{\circ}/12 = 30^{\circ}$ each hour. When the clock reads 10:50, the angle that the minute hand makes with the vertical at 12 is

 $(60-50)(6^\circ) = 60^\circ$, and the angle the hour hand makes is $(1+10/60)30^\circ = 35^\circ$. Therefore, the angle between the hands is $60^\circ - 35^\circ = 25^\circ$.

14. Being proportionately-sized, the larger image of Wisconsin has area $(2.5 \text{ cm}/1 \text{ cm})^2 = (5/2)^2 = 25/4$ times the area of the smaller image of Wisconsin. Since the area of the smaller image of Wisconsin is $0.2 = 1/5 \text{ in}^2$, the area between the two images of Wisconsin is $(25/4)(1/5) - 1/5 = 21/20 \text{ in}^2 \stackrel{\text{or}}{=} 1.05 \text{ in}^2$.

Category II (Algebra, No Calculators)

- 1. **b** 2. **d** 3. **a** 4. **b** 5. **b** 6. **d**
- 7. Given n + (n + 1) + (n + 2) + (n + 3) + (n + 4) = 2020, so that 5n + 10 = 2020, we obtain n = 402.
- 8. The greatest integer a so that $a^6 = (a^3)^2 = (a^2)^3 < 1000$ is a = 3. Thus $a^6 = 729$.
- 9. Since $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot k = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot k = (2^4 \cdot 3^2 \cdot 5)^2 \cdot 7 \cdot k$, the least value is k = 7.
- 10. Any rational roots must be among the values $\pm 1/2$, ± 1 , or ± 2 . It is easy to check that x = -1 is a root, and so we can divide by x + 1 to see that the polynomial is $(x + 1)(2x^3 + x^2 + 3x - 2)$. Likewise, any rational roots of the cubic factor must be among the same values. You can check that a second root is x = 1/2 (note that $2(0)^3 + (0)^2 + 3(0) - 2 = -2 < 0$ and $2(1)^3 + (1)^2 + 3(1) - 2 = 4 > 0$ implies there is a real root between 0 and 1). Divide by 2x - 1 to see that the polynomial is $(x + 1)(2x - 1)(x^2 + x + 2)$. The quadratic factor clearly has no real roots and therefore the greatest real root of the original polynomial is x = 1/2.
- 11. If x equals the number of correct answers, then 4x 2(20 x) = 68 so that 6x = 108 and x = 18.
- 12. Rewrite the equation as $(x^2 + 2xy + y^2) 4x 4y = 21$ and factor to get $(x + y)^2 4(x + y) = 21$. Then $(x + y)^2 4(x + y) 21 = [(x + y) + 3][(x + y) 7] = 0$ and thus x + y = -3 is the least value.
- 13. Since $3^{x-1} + 3^x + 3^{x+1} = 351$, so that $3^{x-1}(1+3+9) = 351$, we obtain $3^{x-1} = 27$.
- 14. Using synthetic division, we obtain

1	1	b	3		-1	1	b	3
		1	b+1	and			-1	-b+1
	1	b+1	b+4			1	b - 1	-b + 4

where it is given that b + 4 = 2(-b + 4). Solve for b to get b = 4/3.

Category III (Advanced Mathematics, No Calculators)

- 1. Observe that y x = 10.
 - (a) **True**
 - (b) **True** (Example: x = 10, y = 20)
 - (c) **False** (Example: x = 11, y = 21)
 - (d) **True**
 - (e) **False** (See (c))

- 2. We have f(1) = -5 and $f(x+1) = \frac{5(x+1)}{(x+1-1)^2 1} = \frac{5(x+1)}{x^2 1} = \frac{5(x+1)}{(x-1)(x+1)} = \frac{5}{x-1}$. Hence $\frac{1}{5} \left[f(x+1) - f(1) \right] = \frac{1}{5} \left[\frac{5}{x-1} + 5 \right] = \frac{1}{x-1} + 1 \stackrel{\text{or}}{=} \frac{x}{x-1}$.
- 3. Since g(0) = 0 = g(2), point A has coordinates (0, 0) and point B has coordinates (2, 0). The graph can be found by first translating the graph of y = |x| one unit to the right and one unit downward to get y = |x 1| 1, and then by reflecting the negative portion across the x-axis to get y = ||x 1| 1| = g(x). The figure to the right shows the graph when $-4 \le x \le 4$.

Alternatively, since

$$g(x) = \begin{cases} |1 - x - 1| = |x| & \text{when } x \le 1, \\ |x - 1 - 1| = |x - 2| & \text{when } x \ge 1, \end{cases}$$

we have

$$g(x) = \begin{cases} -x & \text{when } x \le 0, \\ x & \text{when } 0 \le x \le 1, \\ 2 - x & \text{when } 1 \le x \le 2, \\ x - 2 & \text{when } x \ge 2. \end{cases}$$

- 4. Rearrange the inequality to get $n^2(n^2-1) < 11n(n^2-1)$. It follows that n > 0 and $n \neq 1$, and so we can divide by $n(n^2-1)$ to get n < 11. Since n can be any of 2, 3, 4, 5, 6, 7, 8, 9, or 10, there are 9 solutions for n.
- 5. In other words, we are counting all three-digit numbers that have digts of 0, 1, 2, and 3 only. Thus the answer is $3 \cdot 4 \cdot 4 = 48$.
- 6. Observe that $x^3 3x^2 + x + 1 = (x a)(x b)(x c) = x^3 (a + b + c)x^2 + (ab + ac + bc)x abc$. Hence a + b + c = 3 and abc = -1. Therefore, $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ac} = \frac{a + b + c}{abc} = -3$.
- 7. If the club has n members of which m are math majors, then the proportion (n m)/n of non-math majors satisfies $0.91 < (n m)/n \le (n 2)/n$ since $m \ge 2$. Solve (n 2)/n > 0.91 for n to get n > 22.2. Therefore, the club has at least 23 members.
- 8. By rewriting the equation as $(x-3)^2 + y^2 = 10$, we find that the possible integer values for y are ± 3 , ± 2 , and ± 1 . Hence the solution set of ordered pairs (x, y) is $\{(2, -3), (4, -3), (2, 3), (4, 3), (0, -1), (6, -1), (0, 1), (6, 1)\}$. Thus the answer is 8.
- 9. By placing coordinate axes along the walls as shown, the elliptical table corresponds to the equation

$$\frac{(x-a)^2}{a^2} + \frac{(y-b)^2}{b^2} = 1$$

where a = 6 is the semi-major axis length and b > 1 is the semiminor axis length. Letting $x = 6 - \sqrt{20}$ and y = 1, and solving the equation for b, we find that b = 3. Therefore, the answer is 2b = 6.

10. Let $n^2 - 65 = m^2$, where n and m are positive integers. Then n - m and n + m are positive integers that satisfy (n - m)(n + m) = 65. Hence

$$\begin{cases} n - m = 1 \\ n + m = 65 \end{cases} \quad \text{or} \quad \begin{cases} n - m = 5 \\ n + m = 13 \end{cases}$$

and so by solving the systems of equations, we find that n = 33 or n = 9.

Ameriprise Financial Services—Niemeyer, Ledvina and Associates • Church Mutual Insurance • Delta Dental Plans Association • Regnier Consulting Group • Sentry Insurance • Skyward • University of Wisconsin-Stevens Point

À DELTA DENTAL

The Central Wisconsin Mathematics League is sponsored by: